- 1. °ÀǸñÇ¥
- º¹¼ÒÇÔ¼ö·ÐÀº
19¼¼±â¿¡ ÄÚ½Ã¿Í ¸®¸¸ µî¿¡ ÀÇÇÏ¿© ±× ÀÌ·ÐÀÌ È¹±âÀûÀ¸·Î ¹ßÀüµÇ¾úÀ¸¸ç
¸¹Àº Á¤¸®°¡ È®¸³µÇ°í ¹°¸®Çаú °øÇÐ µî¿¡ ±¤¹üÀ§ÇÏ°Ô ÀÀ¿ëµÇ¾ú´Ù.
ÇöÀç¿¡µµ ÇØ¼®ÇÐ ºÐ¾ß¸¸ÀÌ ¾Æ´Ï¶ó ±âÇÏÇÐ, ´ë¼öÇÐ, ¼ö·Ð µî
¼öÇÐÀÇ ¿©·¯ ºÐ¾ß¿Í °ü·ÃµÇ¾î ¿¬±¸µÇ°í ÀÖÀ¸¸ç, ¹°¸®Çаú °øÇÐ,
ÀüÀÚ±âÇÐ, ¿ªÇÐ µî °úÇÐÀÇ ¿©·¯ ºÐ¾ß¿¡ ³Î¸® ÀÀ¿ëµÇ´Â ¼öÇÐÀÇ
Áß¿äÇÑ ºÐ¾ßÀÌ´Ù.
- º» °ÀÇ´Â
¼öÇÐÀ̳ª ¼öÇб³À°À» Àü°øÇÏ´Â ÇлýµéÀ» ´ë»óÀ¸·Î º¹¼ÒÇÔ¼ö·Ð¿¡
´ëÇÑ ±âº» °³³äÀ» ÀÌÇØÇϰí ÁÖ¿ä ÀÌ·ÐÀ» ½ÀµæÇÏ¿© ¿©·¯ ¹®Á¦¿¡
ÀÀ¿ëÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» ¹è¾çÇÔ°ú ¾Æ¿ï·¯ ÁßµîÇб³ ¼öÇб³»ç·Î¼
±³°ú³»¿ë¿¡ ´ëÇÑ Àü¹®Àû Áö½Ä°ú ÃæºÐÇÑ ÀÚÁúÀ» °®Ãßµµ·Ï ÇÔÀ»
¸ñÇ¥·Î ÇÑ´Ù.
-
- 2. °Àdz»¿ë
- º» °ÀÇÀÇ
³»¿ëÀº º¹¼ÒÇÔ¼ö·ÐÀÇ ±âº»ÀûÀ̰í ÁÖ¿äÇÑ ÀÌ·Ð °¡¿îµ¥ º¹¼Ò¼öü°è,
º¹¼ÒÇÔ¼öÀÇ ¼ºÁú, ÇØ¼®ÇÔ¼ö¿Í ¸è±Þ¼ö, º¹¼ÒÇÔ¼öÀÇ ÀûºÐ°ú ÄÚ½ÃÀÇ
ÀûºÐÀÌ·Ð µîÀ¸·Î ÀÌ·ç¾îÁø´Ù.
-
- 3. °Àǹæ¹ý
- º» °ÀÇ´Â
º¹¼ÒÇÔ¼ö·ÐÀÇ ±âº»ÀûÀÎ °³³ä°ú ÁÖ¿ä Á¤¸®ÀÇ ³»¿ëÀ» ¿¹¿Í ÇÔ²²
¼³¸íÇÏ´Â °ÀÇ¿Í, À̸¦ ÀÍÈ÷°í ÀÀ¿ëÇÏ´Â ¹®Á¦, ƯÈ÷ ±³ÀçÀÇ
¿¬½À¹®Á¦¸¦ ÇлýÀÌ ÇØ°áÇÏ°Ô ÇÏ¿© ¹ßÇ¥ÇÏ´Â Åä·ÐÀ¸·Î ÀÌ·ç¾îÁö°Ô
µÈ´Ù.
- ÇÔ¼öÀÇ
»ç»ó ¼ºÁú°ú ¿µ¿ªÀÇ º¯È¯ µî ±âÇÏÀûÀÎ ¼ºÁúÀ» ´Ù·ê ¶§¿¡´Â MapleÀ»
»ç¿ëÇÏ¿© ÄÄÇ»ÅÍ·Î ±×·¡ÇÁ¸¦ »ý¼ºÇÏ¿© »ìÆìº»´Ù.
-
- 4. Æò°¡¹æ¹ý
- (1) Ãâ¼®: 10Á¡À»
¸¸Á¡À¸·Î °á¼® 1ȸ¿¡ ´ëÇÏ¿© 1Á¡¾¿ °¨ÇÔ.
- Áö°¢
3ȸ´Â °á¼® 1ȸ·Î °£ÁÖÇÔ.
- ¼ö¾÷½Ã¼öÀÇ
3/4 ¹Ì¸¸ Ãâ¼®ÇÑ ÇлýÀº FÇÐÁ¡À¸·Î ó¸®ÇÔ.
- (2) °úÁ¦¹° ¹×
¹ßÇ¥: 10Á¡À» ¸¸Á¡À¸·Î ÇÔ.
- 1°Ç¸¶´Ù
2´Ü°è·Î Æò°¡ÇÏ¿© Æò±ÕÇÔ.
- (3) Áß°£Æò°¡:
40Á¡
- (4) ±â¸»Æò°¡:
40Á¡
- (5) ÇÕ»êÇÑ ÃÑÁ¡À¸·Î
»ó´ëÆò°¡ÇÔ.
-
- 5. ¼ö°´ë»ó
- ¼öÇб³À°°úÀ̰ųª,
¼öÇÐ1°ú ¼öÇÐ2¸¦ ¼ö°ÇÑ ÇлýÀ¸·Î¼ ¼ö°À» Èñ¸ÁÇÏ´Â Çлý
-
- 6. ±³Àç ¹× Âü°í¹®Çå
- ±³Àç: À̼®¿µ
Àú, °³Á¤ÆÇ º¹¼ÒÇÔ¼ö·Ð, ±³Çבּ¸»ç, 1996.
- ºÎ±³Àç:
1. R.V.Churchill and J.W.Brown, complex Variables and Applications,
5th ed., McGraw-Hill Publishing Company (1990)
- 2.
H.Silvermann, Complex Variables, Houghton Mifflin Company
(1975)
- 3.
Schaum Series, Complex Variables, McGraw-Hill Book Company
(1974)
- 4.
J.E.Marsden, Basic Complex Analysis (1973)
- 5.
N.Levinson and R.M.Redheffer, Complex Variables, Holden-Day,
Inc. (1970)
-
- 7. ÁÖº° °Àǰèȹ
- Á¦1ÁÖ º¹¼Ò¼öÀÇ
Á¤ÀÇ
- Á¦2ÁÖ º¹¼ÒÇÔ¼öÀÇ
¿¬¼Ó¼º°ú ±âº»ÀûÀÎ º¹¼ÒÇÔ¼ö
- Á¦3ÁÖ ¹ÌºÐ°¡´É¼º°ú
Cauchy-Riemann ¹æÁ¤½Ä
- Á¦4ÁÖ ÇØ¼®ÇÔ¼ö¿Í
Á¶ÈÇÔ¼ö
- Á¦5ÁÖ ¼ö¿°ú
±Þ¼öÀÇ ¼ö·Å¼º
- Á¦6ÁÖ Taylor
±Þ¼ö¿Í ¸è±Þ¼ö
- Á¦7ÁÖ ÇØ¼®ÇÔ¼ö¿Í
¸è±Þ¼ö
- Á¦8ÁÖ Áß°£Æò°¡
- Á¦9ÁÖ °î¼±°ú
¸Å°³º¯¼ö
- Á¦10ÁÖ ¼±ÀûºÐÀÇ
°è»ê
- Á¦11ÁÖ Cauchy-Goursat
Á¤¸®
- Á¦12ÁÖ CauchyÀÇ
ÀûºÐ°ø½Ä°ú Morera Á¤¸®
- Á¦13ÁÖ CauchyÀÇ
ºÎµî½Ä°ú ±× ÀÀ¿ë
- Á¦14ÁÖ ÃÖ´ëÄ¡Á¤¸®¿Í
Æí°¢¿ø¸®
- Á¦15ÁÖ ±â¸»Æò°¡
|