°­Àǰèȹ¼­

Àü³²´ëÇб³ »ç¹ü´ëÇÐ ¼öÇб³À°°ú 2003 Çг⵵ 1Çбâ
 

±³  °ú  ¸í : Çö´ë´ë¼ö2
Çмö ±¸ºÐ : Àü°ø¼±ÅÃ
°­  ÀÇ  ½Ç : »ç4-318
¼ö°­ ´ë»ó : ¼öÇб³À°°ú 3Çгâ
ÇÐ       Á¡ : 3 ÇÐÁ¡
¼ö¾÷ ½Ã°£ : È­ 2, ¸ñ 2

´ã´ç±³¼ö
¼º  ¸í : ¹ÚÁ¾·ü

¼Ò  ¼Ó : »ç¹ü´ëÇÐ ¼öÇб³À°°ú
Àü  È­ :  530-2471
¿¬ ±¸ ½Ç : »ç4-417
»ó´ã½Ã°£ :        

 

¥°. Ë»ëùÙÍøö
  Çö´ë´ë¼ö 1ÀÇ ¿¬¼ÓµÈ °­ÀǷμ­, ȯ(ring)°ú ü(field)ÀÇ ±âÃʰ³³ä¿¡ ´ëÇÏ¿© °­ÀÇÇÑ´Ù.
 
¥±. Ë»ëùÒ®é»
   È¯¿¡¼­´Â À׿©È¯(factor ring), À̵¥¾Ë(ideals), Á¤¿ªÀÇ ºÐ¼öü, ¼ÒÀ̵¥¾Ë(prime ideals),   ±Ø´ëÀ̵¥¾Ë(maximal ideals), ±â¾à´ÙÇ×½Ä(irreducible polynomials) µî°ú ü¿¡¼­´Â È®´ëü(extension fields), ´ë¼öÀû È®´ë(algebraic extensions), ±âÇÏÀÛµµ(construction), ºÐÇØÃ¼(splitting fields), Àڱ⵿Çü±º(automorphism fields), ºÐ¸®È®´ëü(splitting extension fields), À¯ÇÑü(finite fields), °¥·Î¾Æ Á¤¸®(Galois theory), ºÒ°¡ÇØÀÎ ´ÙÇ×½Ä(Insolvability of the Quintic)¿¡ ´ëÇÏ¿© °­ÀÇÇÑ´Ù.
 
¥². Îçî§ ¹× óÑÍÅÓñßö
  Îç    î§ : J. B. Fraleigh
             A first course in Abstract Algebra (6th edition)
  óÑÍÅÓñßö   ±èÀÀÅÂ, ¹Ú½Â¾È îÊ, úÞÓÛÓÛâ¦ùÊ, ÀÌ¿ìÃâÆÇ»ç
             I. N. Herstein, Topics in Algebra
 
¥³. Ë»ëùÛ°Ûö
  °¢ ´Ü¿øÀÇ ±âº»ÀûÀÎ °³³äµéÀ» °­ÀÇÇϰí, °¢ ´Ü¿øÀÇ ¿¬½À¹®Á¦´Â ÇлýµéÀÌ Ç®¾î¼­ ÅäÀÇÇÏ¸ç ¿¬½À¹®Á¦ Ç®À̽ð£À» °®´Â´Ù.
 
¥´. øÄʤ۰Ûö
   ñéÊàÍÅÞÛ : 40 %         õó    à¬ : 10 %         
   Ñ¢ØÇÍÅÞÛ : 40 %         Ùýð¹Ç®ÀÌ ¹× ·¹Æ÷Æ® : 10 %
       
¥µ. ñÎܬ Ë»ëùͪüñ
   Á¦  1 ÁÖ   Rings of polynomials over a field
   Á¦  2 ÁÖ   Factorization of polynomials over a field
   Á¦  3 ÁÖ   Homomorphisms and factor rings
   Á¦  4 ÁÖ   Prime and maximal ideals
   Á¦  5 ÁÖ   Introduction to extension fields
   Á¦  6 ÁÖ   Algebraic extensions
   Á¦  7 ÁÖ   Áß°£°í»ç
   Á¦  8 ÁÖ   Geometric constructions
   Á¦  9 ÁÖ   Finite fields
   Á¦ 10 ÁÖ   Automorphism of fields
   Á¦ 11 ÁÖ   The isomorphism extension theorem
   Á¦ 12 ÁÖ   Splitting fields
   Á¦ 13 ÁÖ   Separable extensions
   Á¦ 14 ÁÖ   Galois theory
   Á¦ 15 ÁÖ   ±â¸»°í»ç